On adaptive Metropolis-Hastings methods
نویسندگان
چکیده
This paper presents a method for adaptation in Metropolis-Hastings algorithms. A product of a proposal density and K copies of the target density is used to define a joint density which is sampled by a Gibbs sampler including a Metropolis step. This provides a framework for adaptation since the current value of all K copies of the target distribution can be used in the proposal distribution. The methodology is justified by standard Gibbs sampling theory and generalizes several previously proposed algorithms. It is particularly suited to Metropolis-within-Gibbs updating and we discuss the application of our methods to this problem. The method is illustrated with both a Metropolis-Hastings independence sampler and a Metropolis-with-Gibbs independence sampler. Comparisons are made with standard adaptive Metropolis-Hastings methods.
منابع مشابه
An adaptive Metropolis algorithm
A proper choice of a proposal distribution for Markov chain Monte Carlo methods, for example for the Metropolis±Hastings algorithm, is well known to be a crucial factor for the convergence of the algorithm. In this paper we introduce an adaptive Metropolis (AM) algorithm, where the Gaussian proposal distribution is updated along the process using the full information cumulated so far. Due to th...
متن کاملOutput-Sensitive Adaptive Metropolis-Hastings for Probabilistic Programs
We introduce an adaptive output-sensitive Metropolis-Hastings algorithm for probabilistic models expressed as programs, Adaptive Lightweight Metropolis-Hastings (AdLMH). The algorithm extends Lightweight Metropolis-Hastings (LMH) by adjusting the probabilities of proposing random variables for modification to improve convergence of the program output. We show that AdLMH converges to the correct...
متن کاملAn Adaptive Metropolis algorithm
A proper choice of a proposal distribution for MCMC methods, e.g. for the Metropolis-Hastings algorithm, is well known to be a crucial factor for the convergence of the algorithm. In this paper we introduce an adaptive Metropolis Algorithm (AM), where the Gaussian proposal distribution is updated along the process using the full information cumulated so far. Due to the adaptive nature of the pr...
متن کاملApproximating Bayes Estimates by Means of the Tierney Kadane, Importance Sampling and Metropolis-Hastings within Gibbs Methods in the Poisson-Exponential Distribution: A Comparative Study
Here, we work on the problem of point estimation of the parameters of the Poisson-exponential distribution through the Bayesian and maximum likelihood methods based on complete samples. The point Bayes estimates under the symmetric squared error loss (SEL) function are approximated using three methods, namely the Tierney Kadane approximation method, the importance sampling method and the Metrop...
متن کاملOptimal Proposal Distributions and Adaptive MCMC
We review recent work concerning optimal proposal scalings for Metropolis-Hastings MCMC algorithms, and adaptive MCMC algorithms for trying to improve the algorithm on the fly.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 23 شماره
صفحات -
تاریخ انتشار 2013